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INTRODUCTION
We return to our study [1] of spin dynamics in storage

rings and substantially extend our toolset. To accomplish
that, we employ a method developed in the 1980s by R.
Zimmer and others for Dynamical-Systems theory [2, 3].
This allows us to generalize the notions of particle-spin mo-
tion and field motion. In contrast to [1], we now employ a
discrete-time formalism (but a continuous-time treatment
would do as well). Four major theorems are presented, the
Decomposition Theorem, which allows one to compare dif-
ferent invariant fields, the Invariant Reduction Theorem,
which gives new insights into the existence and uniqueness
problems of invariant fields (and in particular invariant spin
fields), the Cross Section Theorem which supplements the
Invariant Reduction Theorem, and the Normal Form The-
orem which ties invariant fields with the notion of normal
form. It thus turns out that the well established notions of
invariant frame field, spin tune, and spin-orbit resonance are
generalized by the normal form concept whereas the well es-
tablished notions of invariant polarization field and invariant
spin field are generalized to invariant (E, l)-fields. Here the
notation (E, l) will mean that E is a topological space and
that the function l : SO(3) × E → E is a continuous SO(3)-
action, i.e., l (I; x) = x and l (r1r2; x) = l (r1; l (r2; x)).
With the flexibility in the choice of (E, l) we also have a
unified way to study the dynamics of spin-1/2 and spin-1
particles. Accordingly the special cases (E, l) = (R3, l1/2)
and (E, l) = (E1, l1) are discussed in some detail. The ori-
gins of our formalism, lying in bundle theory, are pointed out
and we briefly mention the relation to Yang-Mills Theory
as well.

THE FORMALISM
Particle-spin motion
For given (E, l) each particle carries, in addition to its
position z on the torus Td , an E-valued quantity x we
call spin. The one-turn particle-spin map is the function
P[ j, A] : Td × E → Td × E defined by

P[ j, A](z, x) = ( j (z), l (A(z); x)) , (1)

where j ∈ Homeo(Td ) is the one-turn particle map (e.g.,
linear translation on the torus) and A ∈ C(Td ,SO(3)) is
the one-turn spin transfer matrix. Here Homeo(Td ) denotes
the set of homeomorphisms on Td , C(X,Y ) denotes the
set of continuous functions from X to Y and SO(3) is the
group of real orthogonal 3× 3-matrices of determinant 1 (for
the spinor formalism our formalism is obtained by simply
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replacing SO(3) by SU (2)). In our formalism, (1) is themost
general description of particle-spin dynamics and the choice
of (E, l) depends on the situation, e.g., (E, l) = (R3, l1/2) for
spin-1/2 particles - see below. We work in the framework
of topological dynamical systems and therefore A, j, l are
continuous functions. This condition could be strengthened
to A, j, l being smooth functions or weakened to being Borel
measurable functions.

Field motion and invariant fields
We are primarily interested in the field dynamics induced

by the particle-spin dynamics. Let f : Td → E be an E-
valued field on Td and set x = f (z) in (1). Then after one
turn z becomes j (z) and the field value at j (z) becomes
l (A(z); f (z)). Thus after one turn the field f becomes the
field f ′ : Td → E where f ′(z) := l (A( j−1(z)); f ( j−1(z))).
Thus we have the field map

f 7→ f ′ = l (A ◦ j−1; f ◦ j−1) , (2)

where ◦ denotes the composition of functions. We call f ∈
C(Td ,E) an “invariant (E, l)-field of ( j, A)” if it is mapped
by (2) into itself, i.e., if

f ◦ j = l (A; f ) . (3)

We call (3) the “(E, l)-stationarity equation of ( j, A)”. Our
main focus is on the existence of solutions of (3) as this
is what describes the spin equilibrium of a bunch. In the
important case where (E, l) = (R3, l1/2), an invariant (E, l)-
field f such that | f | = 1 is called an “invariant spin field
(ISF)”. This completes our introduction to the formalism.

The set Σx[ f ] and its invariance
Let Ex := {l (r; x) : r ∈ SO(3)}. Then the Ex partition

E and each set Td × Ex is invariant under the particle-spin
motion of (1) and so we have “decomposed” Td × E. Let

Σx [ f ] := {z ∈ Td : f (z) ∈ Ex } . (4)

The nonempty sets among the Σx [ f ] form a partition of Td
and tell us how the values of f are distributed, i.e., z ∈ Σx [ f ]
iff (=if and only if) f (z) ∈ Ex . It follows from the definition
of Σx[ f ] and (2) that Σx[ f ′] = j (Σx[ f ]). Thus if f is
invariant then every Σx[ f ] is invariant under j and Td is
partitioned into f -dependent invariant sets for the particle
dynamics, an interesting fact in its own right.
We can now state three facts related to the existence of

invariant fields. Firstly, if there exists an x such that Σx [ f ]
is not invariant then f is not an invariant field. Secondly, if
Σx[ f ] is nonempty, let f x ∈ C(Σx[ f ],Ex ) where f x (z) =



f (z). Then f is invariant iff f x ( j (z)) = l (A(z); f x (z)) for
every nonempty Σx [ f ].

Finally, suppose that j is topologically transitive (e.g., off
orbital resonance). This means that a z0 ∈ Td exists such that
B := { jn (z0) : n = 0,±1,±2, ...} is dense in Td , i.e., that the
closure B of B equals Td . Let f be invariant and pick x such
that z0 ∈ Σx[ f ] then B ⊂ Σx[ f ]. Assume E is Hausdorff
(e.g., the topology is from a metric). Then it follows that
Σx[ f ] is closed and, since B = Td , we have Σx[ f ] = Td .
Thus topological transitivity and the Hausdorff property
imply an invariant f takes values only in one Ex . The so-
called “ISF-conjecture” claims, for (E, l) = (R3, l1/2), that
if j is topologically transitive, then an ISF exists.

FOUR BASIC RESULTS
To show our formalism at work we now present four theo-

rems, the Decomposition Theorem (DT), the Invariant Re-
duction Theorem (IRT), the Cross Section Theorem (CST),
and the Normal Form Theorem (NFT).

The Decomposition Theorem (DT)
Let E be Hausdorff. It is natural to ask about the rela-

tion between the dynamics on two distinct invariant sets
Td × Ex , Td × Ey . Consider the particle-spin trajecto-
ries defined by (z(n + 1), x(n + 1)) = P[ j, A](z(n), x(n))
where (z(0), x(0)) = (z0, x0) is given with x0 ∈ Ex .
Suppose there exists β ∈ C(Ex ,Ey ) such that for every
particle-spin trajectory (z(n), x(n)) ∈ Td × Ex the function
(z(n), β(x(n))) ∈ Td × Ey is a particle-spin trajectory. A
necessary and sufficient condition for β to have this property
is that β(l (r; ξ)) = l (r; β(ξ)) for all r ∈ SO(3), ξ ∈ Ex

and this is true iff r0 ∈ SO(3) exists such that {r0rr t0 : r ∈
Hx } ⊂ Hy . Here, the subgroup Hη of SO(3) is defined
by Hη := {r ∈ SO(3) : l (r; η) = η} for every η ∈ E. The
proof of this is constructive showing that β can be defined by
β(l (r; x)) := l (rr t0; y). Furthermore, it can be shown that
if f is an invariant (E, l)-field of ( j, A) which takes values
only in Ex then g ∈ C(Td ,E), defined by g(z) := β( f (z)),
is an invariant field taking values only in Ey .
The above can be generalized as follows, leading to new

ways to treat the spin-1 case and others. So choose (E′, l′)
in addition to (E, l) (possibly (E′, l′) = (E, l)). Let E,E′ be
Hausdorff and let x ∈ E, x′ ∈ E′ such that r0 ∈ SO(3)
exists which satisfies {r0rr t0 : r ∈ Hx } ⊂ H′x′ where
H′x′ := {r ∈ SO(3) : l′(r; x′) = x′}. This is equiva-
lent to the condition that a β ∈ C(Ex ,E′x′ ) exists such
that β(l (r; x)) = l′(r; β(x)). The proof of this is con-
structive showing that β can be defined by β(l (r; x)) :=
l′(rr t0; x′). Furthermore, if f is an invariant (E, l)-field of
( j, A) which takes values only in Ex then the DT tells us that
g ∈ C(Td ,E′), defined by g(z) := β( f (z)), is an invariant
(E′, l′)-field of ( j, A) taking values only in E′x′ . If β is a
homeomorphism, which entails that Ex and E′x′ are home-
omorphic, then g is invariant iff f is. In summary, the DT
classifies invariant fields in terms of the functions β, i.e., in
terms of the subgroups Hx of SO(3).

The Invariant Reduction Theorem (IRT)
Let f ∈ C(Td ,E), x ∈ E, Σ̌x[ f ] := {(z,r) ∈ (Td ×

SO(3)) : l (r; x) = f (z)} and P̌[ j, A] ∈ Homeo(Td ×
SO(3)), with P̌[ j, A](z,r) := ( j (z), A(z)r). Then the IRT
[2, 3] states that f satisfies (3) iff Σ̌x[ f ] is invariant under
P̌[ j, A] for every x ∈ E. For the definition of invariant re-
ductions, see [4] and our comments on bundle theory below.
The IRT renders the existence and uniqueness problems of
invariant fields into a problem of Topological Dynamics
invoking techniques from Ergodic Theory and Homotopy
Theory. In particular the IRT gives a new view of the ISF.

The Cross Section Theorem (CST)
An important aspect of Σ̌x[ f ] is the CST which gives

valuable information to be used when applying the IRT to
(3). Let f ∈ C(Td ,E) take values only in Ex . Thus for
every z ∈ Td , f (z) ∈ Ex and so there exists a function
T : Td → SO(3) such that f (z) = l (T (z), x) but in general
there may not be a continuous T . The CST asserts that
a continuous T exists iff the continuous function px[ f ] :
Σ̌x [ f ]→ Td , defined by px [ f ](z,r) := z, has a cross section
σ, i.e., iff a continuous σ : Td → Σ̌x[ f ] exists such that
px[ f ](σ(z)) = z. Most importantly, if px[ f ] has a cross
section then the CST gives a natural homeomorphism on
Td × SO(3) which maps Σ̌x[ f ] onto Td × Hx . The CST
will be illustrated in the spin-1/2 case.

The Normal Form Theorem (NFT)
To address the case when a cross section exists we use

the NFT, which is closely related to the CST. Let T ∈

C(Td ,SO(3)), x ∈ E and f (z) := l (T (z), x). Then f is
an invariant field iff l (T t ( j (z))A(z)T (z); x) = x for all
z. This motivates the definition of Hx above and we state
the NFT as: T t ( j (z))A(z)T (z) ∈ Hx for all z ∈ Td iff
f ( j (z)) = l (A(z); f (z)) for all z ∈ Td . The moral of the
NFT is that f and T are effectively the same, i.e., that one
can view invariant fields from two different perspectives.
The special case where (E, l) and x are such that

Hx = Gν := {



cos(2πnν) − sin(2πnν) 0
sin(2πnν) cos(2πnν) 0

0 0 1


 :

n = 0,±1,±2, ...} , (5)

is the case where spin tunes, ν, exist. The subcase where
ν = 0 describes spin-orbit resonances. The terminology
NFT is justified as follows: if T ∈ C(Td ,SO(3)) and if
A′(z) := T t ( j (z)) A(z)T (z) belongs to a subgroup H of
SO(3) then one calls ( j, A′) an H-normal form of ( j, A).
The notion of normal form gives a new view on spin tunes
and spin-orbit resonances.

SPECIAL CASES
Spin-1/2 particles and (E, l) = (R3, l1/2)

For spin-1/2 particles themost important (E, l) is given by
E = R3 and where l1/2(r; S) := rS. Clearly E is Hausdorff



and the Ex are concentric spheres centered at (0,0,0) and
the field map (2) gives f ′(z) = A( j−1(z)) f ( j−1(z)). The
invariant (R3, l1/2)-fields f are just the invariant polarization
fields describing the spin equilibrium of a bunch and for
| f | = 1 they are the invariant spin fields. Coming to the
NFT with x = (0,0,1) and using

Hx := {r ∈ SO(3) : l1/2(r; x) = x} =

{



cos(2πν) − sin(2πν) 0
sin(2πν) cos(2πν) 0

0 0 1


 : ν ∈ R} =: SO(2) ,

we find that a T ∈ C(Td ,SO(3)) satisfies
T t ( j (z)) A(z)T (z) ∈ Hx for all z ∈ Td iff the third
column of T is an invariant spin field. Then T is called an
invariant frame field as in [1]. Thus the notion of normal
form gives a new view on the notion of invariant frame field
and generalizes it from the group SO(2) to an arbitrary
subgroup of SO(3). We emphasize that the notions of
invariant frame field and invariant spin field are tied to
the group SO(2). If x = (0,0,1) and f ∈ C(Td ,R3) with
| f | = 1 one observes, by the CST, that px[ f ] has a cross
section iff a T ∈ C(Td ,SO(3)) exists whose third column
is f . Thus the CST gives a new view on invariant frame
fields. Using simple arguments from Homotopy Theory one
can also show [2] that, if d ≥ 2, px [ f ] does not always have
a cross section. We now apply the DT for the case where
(E, l) = (E′, l′) = (R3, l1/2) and x = (0,0,1), y = (0,0, y3)
and define β ∈ C(Ex ,Ey ) by β(l1/2(r; x)) := l1/2(r; y)
where r ∈ SO(3), i.e., β(S) := y3S where S ∈ R3 with
|S | = 1. Then if f is an invariant spin field of ( j, A) we see
that g ∈ C(Td ,R3), defined by g(z) := β( f (z)) = y3 f (z)
is an invariant polarization field of ( j, A).

Spin-1 particles and (E, l) = (E1, l1)
For spin-1 particles themost important (E, l) are (R3, l1/2)

and (E1, l1) where E1 := {M ∈ R3×3 : M t = M,Tr (M) =
0} and where the function l1 : SO(3) × E1 → E1 is defined
by l1(r; M) := r Mr t . For brevity we only address the DT
in this section and we do that for the case where (E, l) =
(R3, l1/2) and (E′, l′) = (E1, l1). Clearly E′ is Hausdorff
and we pick x = (0,0,1) and the diagonal matrix x′ =
diag(y, y,−2y) where y is a real constant and we find Hx =

SO(2),H′x′ = SO(2) ./ Z2 where

SO(2) ./ Z2 := {rr′ : r ∈ Z2,r′ ∈ SO(2)} , (6)

with Z2 := {I3×3,diag(1,−1,−1)} where I3×3 is the 3 × 3
unit matrix. To apply the DT we define β ∈ C(Ex ,E′x′ ) by
β(l1/2(r; x)) := l′1(r; x′) where r ∈ SO(3), i.e., β(S) :=
yI3×3 − 3ySSt where S ∈ R3 with |S | = 1. Thus if f is an
invariant spin field of ( j, A) then g ∈ C(Td ,E1), defined by

g(z) := β( f (z)) = yI3×3 − 3y f (z) f t (z) , (7)

is an invariant (E1, l1)-field of ( j, A). This confirms the
observation [5] obtained by a different method.

UNDERLYING BUNDLE THEORY
While bundle aspects were not needed in the above outline

of our results it is worthwhile to mention them since they are
the origin of our formalism (see [2, 4]) and therefore supply
a steady flow of ideas, many of which not even mentioned
here (e.g., algebraic hull, characteristic class, rigidity). More
details can be found in [3, 6]. The “unreduced” principal
bundle underlying our formalism is a product principal bun-
dle (Td × SO(3),pd ,Td ,Rd ) with bundle space Td × SO(3),
base space Td , bundle projection pd (z,r) := z, and structure
group SO(3). So Rd : SO(3) ×Td × SO(3) → Td × SO(3)
is an SO(3)-action defined by Rd (r; z′,r′) := (z′,r′r t ). The
reductions are just the principal subbundles of the unreduced
bundle. So they are uniquely determined by their bundle
space X which of course is a subspace of Td × SO(3). Per-
haps surprisingly, if one restricts oneself to reductions whose
structure group is closed and for which X is closed then the
well known Reduction Theorem (RT) tells us [2, 7] that the
reductions are exactly those subbundles of the unreduced
principal bundle for which E′ = Σ̌x [ f ] where f ∈ C(Td ,E)
takes only values in Ex and where E is Hausdorff (the struc-
ture group of the reduction is Hx). Thus, as its name sug-
gests, the IRT identifies the dynamical invariance of the
reductions with the invariance of the labeling fields f . With
regard to the bundle aspect, the crucial point of the CST
is that the existence of a cross section of the reduction is
equivalent to the triviality of the reduction, meaning that
the reduction is isomorphic to a product principal bundle.
Note also that the px [ f ] are the projections of the reductions.
Every (E, l) in the formalism corresponds to a so-called asso-
ciated bundle (relative to the unreduced bundle). The bundle
aspects show the close relationship between our formalism
and the use of bundles in Yang-Mills Theory where each
(E, l) corresponds to a certain set of fundamental matter
fields (e.g., one (E, l) corresponds to quarks another one to
leptons etc.).
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